Applying Dataflow and Transactions
to Lee Routing

Chris Seaton, Daniel Goodman, Mikel Lujdn, and Tan Watson

University of Manchester
seatonc,goodmand,mikel.lujan,watson;@cs.man.ac.uk
g J

Abstract. Programming multicore shared-memory systems is a chal-
lenging combination of exposing parallelism in your program and com-
municating between the resulting parallel paths of execution. The burden
of communication can introduce complexity that is hard to separate from
the pure expression of the algorithm and can negate the performance
that is gained from parallelism. We are extending the Scala language
with dataflow for creating parallelism and transactions for the controlled
mutation of shared state. We take an early look at applying this work
to Lee’s algorithm for routing circuit boards and consider the potential
benefits of programming with this system with regard to the elegance of
expression and the resulting performance. We show how our approach re-
duces the number of lines of code and synchronisation operations needed,
at the same time as improving real-world performance.

1 Introduction

A great many strategies have been proposed to make writing parallel programs
that run on multicore shared-memory systems easier and less error prone, at the
same time as achieving a good return on the invested number of processors. This
endeavour becomes more pressing as multicore systems become the majority on
servers, desktops and mobile devices. The number of cores looks likely to continue
to increase, requiring more parallelism in our programs in order to exploit this
power.

We have looked at work to combine two existing constructs that have shown
considerable potential on their own — dataflow [11] and transactional memory
[4]. We have used an established benchmark, Lee’s algorithm for routing printed
circuit boards, to make an early assessment of their utility for creating efficient,
simply written and correct parallel programs. This paper shows how using the
DFLib and MUTS [3] implementations of dataflow and transactional memory
makes the parallel implementation of our program simpler, at the same time as
achieving a real world performance increase compared to coarse locks on typical
desktop hardware, even when all overhead is included.

Presented at the Workshop on Programmability Issues for Heterogeneous Multicores
(MULTIPROG), January 2012, Paris



Sections 2 and 3 briefly describe the concepts of dataflow and transactional
memory, and the implementations that we employed in this work. Section 4 de-
scribes Lee’s algorithm and why we and others are using it to evaluate transac-
tional programs. Section 5 explains how we implemented Lee sequentially, using
coarse locks and then using transactions and dataflow. Section 6 considers what
difference this approach makes to the programr and the performance achieved.
Section 7 considers future directions and Section 8 concludes.

2 Dataflow

Dataflow decomposes a program into a directed acyclic graph with nodes that
perform computation and edges that take the output of one computation and
provide it as input to one or more other nodes. A node is runnable if all of
the nodes preceding it have finished their computation, and so all of the inputs
are available. In a model where the computations do not have any side effects,
such as in functional languages, the graph completely expresses dependencies
between nodes, and if more than one node is runnable at the same time then
they may be run in parallel. The name ‘dataflow’ emphasises that it is the data
flowing between nodes that causes them to be scheduled to run, rather than the
a program counter reaching procedures and causing them to run, as in the von
Neumann model.

As well as helping to expose parallelism by dividing a program into groups of
computations without interdependencies, dataflow can also help us by handling
the synchronisation between running threads. Threads will only run when all
of their inputs are already available, so there is no code needed to achieve the
common barrier or join operations as in Java threads. However, dataflow does
not help us to address the problem of a shared mutable state. As we shall show
using our example problem, Lee’s algorithm as described in Section 4, shared
state can be a key part of the algorithm.

For this work we used the Scala dataflow library, DFLib, being developed
as part of the Teraflux project at the University of Manchester. A dataflow
node is created by wrapping a Scala function in a DFThread object that has
methods to either explicitly set an input, or to link an input to the result of
another DFThread. This allows a dataflow graph to be built up and implicitly
run by DFLib, which will schedule runnable functions using enough OS threads
to occupy all hardware threads.

3 Transactions

Transactional memory allows a series of memory reads and writes to be exe-
cuted as if they were a single indivisible, or atomic, operation. This removes
the need for explicit mutually exclusive locks around data structures. Instead, a
data structure is modified within an atomic block and so appears to be a single



operation that can be applied without excluding others. There are many differ-
ent algorithms that implement this basic transactional behaviour [4], but this
programming interface is common to most of them.

Locks can be a blunt tool that disallows concurrent access to memory based
on the assumption that such accesses will conflict. For some applications, this
may be a correct assumption, but given a particular problem we may be confi-
dent that conflict is rare. Most implementations of transactional memory allow
transactions that do not have conflicting memory accesses to proceed in parallel,
dealing with the less common case of conflicting memory access by restarting
one or both of the transactions involved. This is in contrast to a standard lock-
ing approach which would disallow parallel memory accesses on the same data
structure, even when they do not conflict.

For the work presented here we used the Manchester University Transactions
for Scala (MUTS) library. Taking the Java Deuce transactional memory library
[6] as a starting point, MUTS extends and modifies this work to implement a
selection of different techniques for implementing software transactional memory
for the Scala programming language.

MUTS uses a Java agent to visit all Java classes as they are loaded into the
JVM. This allows it to create a transactional version of all methods that instru-
ment read and write operations. MUTS can then pass these reads and writes
to one of several implementations of software transactional memory algorithms
included in the library. A typical algorithm stores reads and writes in a log, de-
ferring writing to shared memory from the log until the transaction is complete
and values in the read log are verified to not have been written to by another
thread in the elapsed time.

4 Lee’s Algorithm

Lee’s algorithm [7] solves the problem of finding independent routes between a
set of pairs of points on a discrete grid. The applications originally proposed
included drawing diagrams, wiring and optimal route finding, but the algorithm
is now best known as a method for routing paths on a printed circuit board. There
are later algorithms for route finding with less computational complexity, but
Lee produces a shortest solution for any given route and board state, as opposed
to using heuristics to arrive at a good-enough solution in less time. Figure 1b
shows the output of one application of Lee’s algorithm — routing paths on a
printed circuit board — as generated by our implementation.

A simple overview of the Lee algorithm is that from the start point of
the route it looks at all adjacent points and marks them as having cost one.
From each point P so marked, it marks each adjacent point F,4; as having cost
cost(P,q4;) = cost(P) + 1, as long they were not already marked with a lower
cost. If an adjacent point is already part of another route then using that point
would cost more, by an arbitrary constant factor, as a bridge of one route over
another needs to be built. This expansion, as it is called, continues until the end
point is a member of the set of adjacent points. Typically, this expansion forms



[onen
oo
o

=]

5
6|5 5
6 6

(a) Basic expand and trace (b) Output from our output imple-
phases [1] mentation

Fig.1: An illustration of the basic expand and trace phases of Lee’s algorithm
and output from our implementation

a circle around the start point, enveloping obstacles such as existing routes, and
finishing at the end point.

A trace is then run from the end point to the start point, always moving to a
point of lower cost until the start point is reached. This produces a route which
can be marked on the grid. These two key steps are illustrated in Figure la.

Unlike classic problems such as finding Fibonacci numbers or merge sort, Lee
does not belong to the class informally known as ‘embarrassingly parallel’. Such
problems can be broken down into smaller problems that are entirely indepen-
dent, and so can be executed in parallel. There are several ways to decompose
Lee’s algorithm into a set of subproblems, but it cannot be guaranteed a priori
that any two subproblems will not want to lay a route in the same cell of the
shared grid, even when the route’s start and end points are known.

The key to the problem is that any set of subproblems still need to share
access to a single resource — the grid. It is not simple for each thread to have an
independent copy of the grid, as two threads could need use the same point for
multiple routes and would then have to synchronise between themselves. This
would add logic to the program that is unrelated to the algorithm that we are
implementing. It is also not simple for each thread to have one part of the larger
grid, as you can not guarantee which parts a route will use before the expansion
has been calculated and such a scheme would vastly increase the complexity of
the program. However, given all routes on a circuit board it is unlikely that any
two being routed at a particular time will conflict. The parallelism is there — it is
just that it is hard to determine statically and is more apparent as the program
is running.

Work has already been done to use Lee to evaluate the runtime characteristics
of a transactional program [12], and to evaluate the performance of implementa-



tions of transactional memory for Java [1]. Our work builds on this by evaluating
the combined use of transactions and dataflow, with Scala, MUTS and DFLib.

5 Implementation

Scala [9] is a hybrid functional and imperative programming language that runs
on the Java Virtual Machine. The functional aspect allows a clean expression
of a problem in a way that is open to parallelisation with minimum shared or
mutable state. The imperative aspect allows us to have controlled mutation of
the shared state when we require it for efficient execution.

We wrote a set of programs in Scala to solve Lee. One sequential, seq; one
using coarse locks, coaselock; one using the MUTS library, muts and one us-
ing both MUTS and DFLib, dataflow. They share common input and output
formats and many internal data structures. The output of the parallel imple-
mentations is non-deterministic due to the interleaving of separate threads of
execution, so we check the the total routing cost of the solution to compare the
equivalence of different implementations.

5.1 Sequential

We first created a sequential implementation of Lee using a purely functional ap-
proach, combined with a central mutable data structure to represent the board.
Our implementation of Lee is minimal and we excluded some refinements that
Lee described such as weighting against turns in paths. While these refinements
are sensible for actual routing applications, they do not have any effect on the
parallel characteristics of the program and can be considered constant factors to
performance in both space and time. We also allow only one level of bridging,
where one route can cross an existing route, as this is usually sufficient for our
test boards.

The sequential program, seq, represents a clear and succinct expression of
the algorithm. We are adding parallelism because we want the program to run
faster, not because the algorithm requires it, so ideally we want this optimisation
to require minimum new code and minimum modifications to existing code.
The perfect expression of parallelism would be completely orthogonal to the
sequential expression of the algorithm.

5.2 Coarse Lock

Our first parallel implementation, coarselock, creates a thread for each hard-
ware thread in the system. Each thread works in a loop. First it allocates a route
from the input and obtains a private copy of the shared board data structure.
Then it expands and traces the route, using this private copy. The route is then
validated, to ensure that since the private copy was made the board has not
been changed by another thread to make the proposed solution invalid and then
commits the route to the shared board data structure.



There are three resources being shared here — the board data structure, the
list of available routes and the list of solutions. Additionally, the master thread
needs to know when all the solutions are in the list, which we achieve by waiting
for all threads to finish with the join() method.

We make access to these shared resources mutually exclusive using Scala’s
implementation of the M-structure [2], SyncVar[T]. For example, an instance
of SyncVar [MutableBoardState] holds the shared mutable board state data
structure. When a thread wants to lock the data structure so it can validate
its route and commit it to the board without interruption by another thread,
it calls the take method to atomically remove the data structure and leave the
SyncVar empty. Any other thread trying to read or write from the same data
structure will block within take until the former thread is done with the data
structure and calls the put method to return it for other threads to use.

val boardStateForFreeze = boardStateVar.take() // Lock
val privateBoardState = boardStateForFreeze.freeze
boardStateVar.put (boardStateForFreeze) // Unlock

val expansion = expandRoute(board, route, privateBoardState)
val solution = traceRoute(board, route, expansion)

val boardStateForLay = boardStateVar.take() // Lock
val verified = verifyRoute(route, solution, boardStateForLay)
if (verified)
layRoute(route, solution, boardStateForLay)
else
scheduleForRetry(route)
boardStateVar.put (boardStateForLay) // Unlock

In this implementation we had a single lock for the entire board. Another option
would be to use multiple locks to control different parts of the board. We haven’t created
such an implementation, but we do refer to this strategy in the analysis section.

5.3 MUTS

We used the MUTS library to create a parallel implementation by modifying coarselock.
Where coarselock acquires a resource with take to the exclusion of all other threads
before putting it back when it is done, we can instead perform that action inside a
transaction that will only allow other threads to read the same values as long as they
don’t write to them, and will automatically retry if such a conflict is found.

// Atomically copy the shared data structure
val privateBoardState = atomic { boardState.freeze }

val expansion = expandRoute(board, route, privateBoardState)
val solution = traceRoute(board, route, expansion)

// Atomically write to the shared data structure
atomic {



if (verifyRoute(route, solution, boardState))
layRoute(route, solution, boardState)
else
scheduleForRetry(route)

This code looks very similar to the use of a pthread mutex_t, a Java synchronized
block or a SyncVar as used in coarselock. The idea that atomic could be implemented
as a global single lock is one model for thinking about transactional memory [4]. How-
ever, in practice the atomic blocks will allow multiple threads to read at the same time,
and to write at the same time as long as they do not try to write routes using the same
point. If there is a conflict, they will be retried, just as coarselock does explicitly.

5.4 Dataflow

We then extended our muts implementation to use the Scala dataflow library, DFLib.
Where the muts implementation created parallelism by spawning Java threads, the
dataflow constructs provided by DFLib allow us to express this creation of parallelism
in a different way. Each route is a DFThread that will have its inputs ready at the start
of the program’s execution and so will all be runnable. DFLib will schedule them for
us so that only a sensible number are running at any time.

A final DFThread, the ‘collector thread’ will be then created that has each route’s
DFThread as one of its arguments. This will therefore be run when the solutions are
complete. This is a convenience construct provided by DFLib, as it is expected to be a
common pattern, and replaces the synchronisation needed to create the list of solutions
and the join operation to wait for all threads to finish that we used in coarselock.
Figure 2 shows the resulting dataflow graph, and illustrates how the scheduler executes
a small subset of routes at time.

// Accepts solutions as arguments and build a list from them
val solutionCollector = DFManager.
createCollectorThread[Solution] (routes.length)

for (route <- routes) {
// Create a thread to solve a route
val routeSolver = DFManager.createThread(solveRoute _)

routeSolver.argl = board
routeSolver.arg?2
routeSolver.arg3 = boardState

route

// It will send the solutions to this function
routeSolver.arg4 = solutionCollector.tokenl



subset of routes
currently scheduled
on a hardware thread

= nroutes

collector

Fig. 2: The dataflow graph created by dataflow

6 Analysis

6.1 Results

The programs were compiled with Scala 2.9.1 and run on the JVM 1.6.0_27 on an Intel
Core i7 processor comprising four physical cores, each with two-way hyper-threading
for eight hardware threads. The OS was openSUSE 11.2 with Linux 2.6.31.14.

Table 1 shows the running time of the core part of each program, measured using
System.nanoTime (). This excludes the startup time for the JVM and in the case of
muts and dataflow, time to rewrite classes for transactional access. Each program
was run ten times with mean average and standard deviation taken, rounded to three
decimal places. programs were constrained to use 1, 2, 4, 6 or all 8 of the available
hardware threads by replacing calls to availableProcessors() with a constant value.
These results indicate the relative performance than can be achieved within a longer
running system. All parallel implementations show a decrease in performance when
using all available hardware threads. This is in line with other researchers’ findings [8]
and is probably caused by higher contention on resources, limits of hyper-threading,
and time sharing with the kernel and other system processes. We show these results as
they are what would be achieved with a simple implementation that would by default
try to use all available hardware threads.

Hardware Threads
Impl. 1 2 4 6 8
Mean SD Mean SD Mean SD Mean SD Mean SD
seq 29.355 0.310 29.396 0.212 29.535 0.303 29.376 0.220 29.330 0.215
coarselock 30.374 0.321 17.485 0.396 14.986 1.266 13.748 0.776 21.961 1.550
muts 31.422 0.421 16.648 1.157 13.357 0.493 11.528 0.425 14.869 0.683
dataflow 32.093 0.282 16.994 1.149 13.630 1.105 11.805 0.460 14.570 0.401

Table 1: Mean algorithm running time (seconds)

Figure 3 shows the resulting speedup of the algorithms, compared to the sequential
implementation. That is the time for the sequential implementation divided by time
for each other implementation, for a given number of hardware threads. These results
indicate the return on investment for the number of hardware threads applied to the
problem.



2.6

"seq —— E
24 L coarselock ---x--- B |
dataflow & i
22 E‘ X, ,
2 - . 4
S 18 |
el
g
& L6r i
ar N
12+ f ,
1l
0.8 L 1 1 1 ! |
1 2 3 4 5 6 7 g

Hardware Threads

Fig. 3: Algorithm speedup compared to sequential

Table 2 shows the running time of the entire program shown next to the algorithm
time, when running on 8 hardware threads. This includes JVM startup (common to all
implementations), and for muts and dataflow the time to rewrite classes for transac-
tional access. These results are indicative of the total real-world cost of implementing
Lee’s algorithm for a medium sized board in each of the implementations, including
all overhead of the libraries that we have employed, and the rewriting cost involved
in MUTS. Rewriting could be done ahead of time, and we show these numbers here
to give an indication of this cost, whether it is made at runtime or not. The overhead
becomes a less significant proportion of whole program time given larger problem sizes
of a greater number of problems processed in batch.

Implementation Algorithm Whole program Overhead

seq 29.330 29.697 0.367
coarselock 21.961 22.634 0.673
muts 14.774 17.136 2.267
dataflow 14.215 18.877 4.307

Table 2: Whole program running time on 8 hardware threads (seconds)

Table 3 shows some informal metrics of the program code required to implement
the different parallel algorithms. ‘Parallel operations’ refers to the number of opera-
tions at the source code level related to nothing but the parallel architecture around
the pure algorithm. This includes creating or joining a thread, reading or writing a
synchronisation variable and atomic blocks. Each parallel operations detracts from the
pure algorithm and is a potential source of error.

All of the parallel implementations are correct and usable, but we had two goals
that we can analyse them against. First, the only reason for creating parallelism was
that we wanted the program to run faster than our sequential version. We therefore



Implementation Lines of code Parallel operations

seq 251 0
coarselock 330 (+79) 11
muts 328 (477) 6
dataflow 300 (+49) 5

Table 3: Code metrics

analysed their performance against the sequential implementation, given a multicore
system. Secondly, we said that ideally we didn’t want to distract from the elegant ex-
pression of the algorithm that the sequential implementation gives us. We wanted to
introduce minimum new code and to modify minimum existing code. Each addition or
modification further ties the expression of the algorithm and the parallelism together
and makes modification or debugging to the algorithm itself harder. We therefore anal-
yse the changes needed to create the different parallel implementations.

6.2 Coarse Lock

Implementing Lee’s algorithm using coarse locks would probably be the default ap-
proach by most industrial programrs. Shared data structures has been identified and
locks placed around them. This has created a more verbose program with 11 parallel
operations.

The key problem with coarselock is that all threads need to read and write the
board to make any progress, and given that we are making that access mutually exclu-
sive, we are only allowing one thread to make progress at a time. There is still a degree
of work that can be done in parallel — after creating a private copy of the board, the
expansion can proceed in parallel — but when we add more threads trying to complete
the work faster, we just end up with a bigger queue for the board lock.

As described in Section 5, it would be possible to develop a finer grained system
of locks. However, coarselock is already the most complicated of the programs that
we have written, as shown in Table 3, and that is with just one lock. Multiple locks
would require logic to work out which locks to acquire, as well as a protocol for the
order in which to acquire the locks in order to avoid classic deadlock. Even if it tested
well, how would we gain confidence that our locking protocol worked every time?

6.3 MUTS

The muts implementation looks similar to coarselock, with the same thread creation
and the same points of synchronisation on the same data structures. However, as we
are using transactional memory, the semantics of the code is very different, and will
not block another thread unless there is a conflict in the memory locations that they
want to read and write. The muts implementation achieves better performance from
essentially the same code as in coarselock because the MUTS atomic block will allow
more than one thread to run inside it, as long as the are not conflicting on the memory
that they use, which as we already described, is unlikely.

Software transactional memory introduces a significant overhead to programs, in
that within a transaction all reads and writes have to be instrumented and logged. This

10



will entail allocating and populating a data structure in proportion to the number of
reads and writes the transaction performs. For example, to create a private copy of our
test boards involves creating a log with a not-insignificant 6002 read entries. In MUTS,
there is also the overhead at runtime of rewriting all class files to include transactional
variants of methods used within transactions. In this evaluation we are looking at the
resulting performance of the program, so we included all of these overheads in our
whole program timing measurements. This transformation can alternatively be made
ahead of time for a known set of class files. Even with all of the overhead, muts still
runs significantly faster than seq and coarselock on 8 hardware threads.

6.4 Dataflow

The dataflow implementation uses the same code as muts to synchronise access to the
shared board data structure, but by structuring the program as dataflow we simplify
the parallel parts of the algorithm. As we create one DFThread for each route, we have
removed the synchronisation needed for sharing the available remaining routes between
worker threads. By creating a final DFThread to collect the results we have also removed
the synchronisation needed there. DFLib can manage the scheduling and dependencies
of both of these two problems for us. This reduces the number of parallel operations
to a lower number than that of muts alone. We would argue that where less parallel
constructs are required, development is easier and there is less possibility for error, as
has been found empirically by other researchers [10].

7 Further Work
7.1 DFLib

Our implementation of Lee’s algorithm uses dataflow to express only a couple of simple
dependencies, and although this is a legitimate use of DFLib that does reduce the
volume of code needed for synchronisation and a work-queue, it is likely that a more
advanced dataflow decomposition of Lee’s algorithm, or another problem entirely, will
reveal much greater gains in elegant expression and runtime performance available

using DFLib.

7.2 MUTS

MUTS will currently make any read or write operation within a transactional block
part of the transaction, regardless of whether or not the object is shared or mutable.
MUTS could be improved with static analysis to reduce the size of the read and write
sets. Other transactional memory implementations such as that of Haskell achieve this
with explicitly typed transactional objects [5], but if this was the case with MUTS we
could not have used our existing sequential board data structure without modification,
and modifying it to use a transactional type such as Haskell’s TVar would have been
more work unrelated to the actual algorithm.

7.3 Other Algorithms

It is likely that other algorithms with similar properties are also well suited to dataflow
with transactions. It would be interesting to investigate exactly what these properties
are and which algorithms they apply to, so that when they are observed a dataflow-
transactional approach can be recommended.

11



8 Conclusions

Our evaluation shows that dataflow combined with transactional memory is a succinct
and efficient method for a parallel implementation of Lee’s algorithm and is worth
further development and investigation.

When applied to Lee’s algorithm, dataflow and transactions allow a parallel im-
plementation that is closest to the original sequential implementation. This makes any
modifications needed to the algorithm simpler, as one has to consider less parallel code,
and it reduces the chance of error as there are less instances of their use that could be
incorrect.

These methods expose more parallelism than simple coarse locks and even with
runtime transactional overhead the core of the implementation always runs faster than
coarse locks, and with 8 hardware threads will run faster even when time consuming
rewriting is included in timings.

We believe that transactions and dataflow in Scala using MUTS and DFLib can
be used in other research development and real world applications to express parallel
programs with minimal modifications and extra code, while achieving good comparative
performance and speedup.

9 Acknowledgements

The authors would like to thank the European Communitys Seventh Framework pro-
gram (FP7/2007-2013) for funding this work under grant agreement no 249013 (TERAFLUX-
project). Chris Seaton is an EPSRC funded student. Mikel Lujén is supported by a
Royal Society University Research Fellowship.

References

1. Ansari, M., Kotselidis, C., Jarvis, K., Lujan, M., Kirkham, C., Watson, I.: Lee-
tm: A non-trivial benchmark for transactional memory. In: Proceedings of the 7th
International Conference on Algorithms and Architectures for Parallel Processin
(2008)

2. Barth, P., Nikhil, R., Arvind: M-structures: Extending a parallel, non-strict, func-
tional language with state (1991)

3. Goodman, D., Khan, B., Khan, S., Kirkham, C., Lujan, M., Watson, I.: Muts:
Native scala constructs for software transactional memory. In: Proceedings of Scala
Days (2011)

4. Harris, T., Larus, J., Rajwar, R.: Transactional Memory. Morgan & Claypool,
second edn. (2010)

5. Harris, T., Marlow, S., Peyton Jones, S., Herlihy, M.: Composable memory trans-
actions. In: Proceedings of the tenth ACM SIGPLAN symposium on Principles
and practice of parallel programming (2005)

6. Korland, G., Shavit, N., Felber, P.: Noninvasive concurrency with java stm. In:
Programmability Issues for Multi-Core Computer (2010)

7. Lee, C.Y.: An algorithm for path connections and its applications. IRE Transac-
tions on Electronic Computers (1961)

8. Marlow, S., Peyton Jones, S., Singh, S.: Runtime support for multicore haskell. In:
International Conference on Functional Programming (2009)

12



10.

11.

12.

Odersky, M., Spoon, L., Venners, B.: Programming in Scala. artima, second edn.
(2010)

Pankratius, V., Adl-Tabatabai, A.R.: A study of transactional memory vs. locks
in practice. In: Symposium on Parallel Algorithms and Architectures (2011)
Watson, 1., Woods, V., Watson, P., Banach, R., Greenberg, M., Sargeant, J.: Flag-
ship: a parallel architecture for declarative programming. In: Proceedings of the
15th Annual International Symposium on Computer architecture (1988)

Watson, 1., Kirkham, C., Lujan, M.: A study of a transactional parallel routing
algorithm. In: Proceedings of the 16th International Conference on Parallel Archi-
tecture and Compilation Techniques (2007)

13



