
Applying Dataflow and
Transactions to Lee Routing

Chris Seaton, Daniel Goodman, Mikel Luján, and Ian Watson
University of Manchester

{seatonc,goodmand,mikel.lujan,watson}@cs.man.ac.uk

1

MULTIPROG 2012
23 January 2012

Paris

mailto:seatonc@cs.man.ac.uk
mailto:seatonc@cs.man.ac.uk

Aims

• Looking at general purpose programming on
commodity systems

• Evaluate an implementation of dataflow
combined with transactions

• Lee’s algorithm for circuit routing as a test
application

• Impact on programmability

• Speedup

2

3

Dataflow Transactions
Access to shared stateCreation of parallelism

Simple implementations that
achieve speedup

Multicore as commodity, need to parallelise
irregular algorithms such as Lee

Example application – circuit routing

4

Example application – circuit routing

5

Lee’s algorithm – sequential

6

5 4 3 4 5 6

4 3 2 3 4 5 6

3 2 1 2 3 4 5 6

2 1 S 1 2 3 4 5 6

3 2 1 2 3 4 5 6

4 3 2 3 4 5 6

5 4 3 4 5 6 E

6 5 4 5 6

6 5 6

6

5 4 3 4 5 6

4 3 2 3 4 5 6

3 2 1 2 3 4 5 6

2 1 S 1 2 3 4 5 6

3 2 1 2 3 4 5 6

4 3 2 3 4 5 6

5 4 3 4 5 6 E

6 5 4 5 6

6 5 6

6

Lee’s algorithm – sequential

7

9 8 9

8 7 8 9 E

7 6 7 8 9

6 5 9

5 4 3 2 1 2 8 9

4 3 2 1 S 1 7 8 9

5 4 3 2 1 2 6 7 8

6 5 4 3 2 3 4 5 6 7

7 6 5 4 3 4 5 6 7 8

8 7 6 5 4 5 6 7 8 9

9 8 9

8 7 8 9 E

7 6 7 8 9

6 5 9

5 4 3 2 1 2 8 9

4 3 2 1 S 1 7 8 9

5 4 3 2 1 2 6 7 8

6 5 4 3 2 3 4 5 6 7

7 6 5 4 3 4 5 6 7 8

8 7 6 5 4 5 6 7 8 9

Lee’s algorithm – sequential

8

E

S

S

E

Lee’s algorithm – parallel

• Lots of routes

• Find enough independent routes

• Where on the board will a route go?

• Very difficult to lock before starting

9

Dataflow

• Functional

• Functions scheduled when input ready

• Pass input from function to function

• All ready functions can be run in parallel

• Supports traditional parallelism - divide and
conquer

10

Dataflow

a c b d

11

innerProduct (a, b) (c, d) = (a × c) + (b × d)

Dataflow

×

a c

×

b d

12

innerProduct (a, b) (c, d) = (a × c) + (b × d)

Dataflow

a c b d

+

13

innerProduct (a, b) (c, d) = (a × c) + (b × d)

× ×

Transactional memory

• Semantic annotation of code that is to be
executed atomically

• Often optimistic – roll back and retry

• Often implemented using locks, atomic
instructions

• Suits irregular algorithms as dependencies can
be handled only when they occur

14

Tools

• Scala

• Transactional memory: MUTS

• Dataflow: DFLib

• Teraflux project – http://www.teraflux.eu

15

Implementation of Lee

• Sequential

• Coarse locked

• Transactional: MUTS

• Dataflow + transactional: MUTS + DFLib

16

Accessing shared state – coarse lock
17

lock
copy board state
unlock

. . . produce a solution . . .

lock

is the solution still valid:
 save it to the board
else:
 retry it later

unlock

Accessing shared state – transactions
18

atomically:
 copy board state

. . . produce a solution . . .

atomically:
 is the solution still valid:
 save it to the board
 else:
 retry it later

Scheduling – threads
19

for each core:
 fork a new thread:
 loop while work:
 lock worklist
 take a route
 unlock

. . . solve the route . . .

 lock solutions
 add to the list of solutions
 unlock

Scheduling – dataflow

solutions_thread = create collector thread (n)

for each route:
 route_thread = create thread (solveRoute)
 route_thread.arg1 ← board
 route_thread.arg2 ← route

 route_thread.arg3 ← boardState

 route_thread.output → solutions_thread

solutions_thread.output → . . .

20

Dataflow
21

Dataflow
22

Dataflow
23

Code metrics

Implementation Lines of code Parallel operations

Sequential 251 0

Coarse lock 330 (+79) 11

Transactional 328 (+77) 6

Dataflow + transactional 300 (+49) 5

24

Experimental Design

25

• Commodity hardware

• Intel Core i7 920, 4 cores each with 2-way SMT

• SuSE 11.2, Linux 2.6

• Java 1.6, Scala 2.9, MUTS 1.1

• Wall clock run time, excluding setup and IO

• 10 repetitions with mean and SD recorded

We have simpler programs – do we
still get a decent speedup?

Speedup relative to sequential

26

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 1 2 3 4 5 6 7 8

Sp
ee

du
p

Hardware Threads

seq
coarselock

muts
dataflow

Conclusions

27

• Dataflow can be combined with transactions

• Lee shows certain properties that are currently
difficult to parallelise

• Together dataflow and transactions are easier to
program than on their own

• Together they produce performance similar to
transactions on their own, and faster than coarse locks

http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS/
(or just search for “scala muts”)

http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS/
http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS/

Questions
Chris Seaton, Daniel Goodman, Mikel Luján, and Ian Watson

University of Manchester

{seatonc,goodmand,mikel.lujan,watson}@cs.man.ac.uk

28

Chris Seaton is an EPSRC funded student. Mikel Luján is a Royal Society
University Research Fellow. The Teraflux project is funded by the European

Commission Seventh Framework Programme.

mailto:seatonc@cs.man.ac.uk
mailto:seatonc@cs.man.ac.uk

Coarse lock

val boardStateForFreeze = boardStateVar.take() // Lock
val privateBoardState = boardStateForFreeze.freeze
boardStateVar.put(boardStateForFreeze) // Unlock

...

val boardStateForLay = boardStateVar.take() // Lock

val verified = verifyRoute(route, solution, boardStateForLay)

if (verified)
 layRoute(route, solution, boardStateForLay)
else
 scheduleForRetry(route)

boardStateVar.put(boardStateForLay) // Unlock

29

Transactional

val privateBoardState = atomic { boardState.freeze }

...

atomic {
 if (verifyRoute(route, solution, boardState))
 layRoute(route, solution, boardState)
 else
 scheduleForRetry(route)
}

30

Threads with a work list

val threads = for (n <- 0 until threadsCount) yield
 new Thread(new Runnable() {
 def run() = {
 while (...) {
 var routes = routesVar.take() // Lock

...
 routesVar.put(routes) // Unlock

 if (route == null) {

...
 } else {
 val solution = solveRoute(board, route, boardStateVar)

 var solutions = solutionsVar.take() // Lock
 solutions ::= solution
 solutionsVar.put(solutions) // Unlock
 }
 }
 }
 })

31

Dataflow

val solutionCollector =
 DFManager.createCollectorThread[Solution](routes.length)

for (route <- routes) {
 val routeSolver = DFManager.createThread(solveRoute _)
 routeSolver.arg1 = board
 routeSolver.arg2 = route
 routeSolver.arg3 = boardState
 routeSolver.arg4 = solutionCollector.token1
}

solutionCollector.addListener(solutionsOut)

32

