Y
er

The Universit
of Manchest

MANCHESTER

1824

Applying Dataflow and
Transactions to Lee Routing

Chris Seaton, Daniel Goodman, Mikel Lujan, and lan Watson

University of Manchester

{seatonc,goodmand,mikel.lujan,watson}@cs.man.ac.uk

MULTIPROG 2012
23 January 2012
Paris

mailto:seatonc@cs.man.ac.uk
mailto:seatonc@cs.man.ac.uk

Y
er

The Universit
of Manchest

MANCHESTER
1824

Aims

® [ooking at general purpose programming on
commodity systems

® Evaluate an implementation of dataflow
combined with transactions

® |ee’s algorithm for circuit routing as a test
application

® |mpact on programmability

® Speedup

MANCHESTER
1824

>N

)

Multicore as commodity, need to parallelise
irregular algorithms such as Lee

Dataflow Transactions

Creation of parallelism Access to shared state

Simple implementations that
achieve speedup

1824

4
7
0]
T
W

o L|<| 4:, ————— . .q%:_ f ﬁ.b
: =2 .rrrl L* _T., i — 0rx) ee o sesete
. e !) L]
- S e i : T | iy

sf = v L 1] ﬁ _.J I
LI et . — . : L

Aa = ..M ﬂ
7 |

191Sayduep Jo
Ayisianiun ag |

It routing

IrCul

Example application — ¢

Yy
er

The Universit
of Manchest

MANCHESTER
1824

.h..

-'i!:!![h'i!!["

BMINNIIT o=
e e HT1LH

r ..IIIIIII.
NP g =
-

et
Example application — circuit routing

5

1824

4
7
0]
T
W

191Sayduep Jo
Ayisianiun ag |

Lee’s algorithm — sequential

1824

=7
i
7
]
L
W

J21S3YdUe\N JO
Ayisianiun ag |

Lee’s algorithm — sequential

Yy
er

The Universit
of Manchest

MANCHESTER
1824

-

Lee’s algorithm — sequential

MANCHESTER
1824

—_—)
wn
E

.Zu
V=
(V.

e'sty

Lee’s algorithm — parallel

D
L
O

® Lots of routes
® Find enough independent routes
® Where on the board will a route go!

® Very difficult to lock before starting

Y
er

The Universit
of Manchest

MANCHESTER
1824

Dataflow

® Functional

® Functions scheduled when input ready
® Pass input from function to function

® All ready functions can be run in parallel

® Supports traditional parallelism - divide and
conquer

10

ity

The Univers
of Manchester

Dataflow
innerProduct (a,b) (c,d) = (a X ¢) + (b X d|

OX0020.

sity

The Univer
of Manchester

Dataflow
innerProduct (a,b) (c,d) = (a X ¢) + (b X d|

BJolofo

N/

OO

12

Dataflow
innerProduct (a,b) (c,d) = (a X ¢) + (b X d|
N/

N/

oS
©

|3

y

The Universit
of Manchester

MANCHESTER
1824

Transactional memory

Semantic annotation of code that is to be
executed atomically

Often optimistic — roll back and retry

Often implemented using locks, atomic
Instructions

Suits irregular algorithms as dependencies can
be handled only when they occur

14

Y
er

The Universit
of Manchest

MANCHESTER
1824

Tools

Scala
Transactional memory: MUTS

Dataflow: DFLib

Teraflux project — http://www.teraflux.eu

|5

ity

of Manchester

The Univers

MANCHESTER
1824

Implementation of Lee

Sequential

Coarse locked

Transactional: MUTS

Dataflow + transactional: MUTS + DFLib

16

Y
er

The Universit
of Manchest

MANCHESTER
1824

lock
copy board state
unlock

... produce a solution ...
lock
is the solution still valid:
save it to the board
else:

retry it later

unlock

Accessing shared state — coarse lock

|7

Y
er

The Universit
of Manchest

MANCHESTER
1824

atomically:
copy board state

... produce a solution ...

atomically:
is the solution still valid:
save it to the board
else:
retry it later

Accessing shared state — transactions

|8

Yy
er

The Universit
of Manchest

MANCHESTER

1824

for each core:
fork a new thread:
loop while work:
lock worklist
take a route
unlock

...solve the route ...
lock solutions

add to the list of solutions
unlock

Scheduling — threads

19

Yy
er

The Universit
of Manchest

MANCHESTER

1824

solutions_thread = create collector thread (n)

for each route:
route_thread = create thread (solveRoute)

route thread.argl ¢ board
route_thread.arg2 € route

route thread.arg3 ¢ boardState

route_thread.output — solutions_thread

solutions_thread.output = ...

Scheduling — dataflow

20

MANCHESTER

1824

ity

The Universit
of Manchester

subset of routes
currently scheduled
on a hardware thread

Dataflow

21

collector

N routes

Yy
er

The Universit
of Manchest

MANCHESTER

Dataflow

22

collector

ity

The Universit
of Manchester

MANCHESTER

Intermediate collector

Dataflow

23

final collector

Y
er

The Universit
of Manchest

MANCHESTER
1824

Implementation Lines of code [Parallel operations
Sequential 251 0
Coarse lock 330 (+79) |l
Transactional 328 (+77) 6
Dataflow + transactional 300 (+49) 5

Code metrics

24

y

The Universit
of Manchester

MANCHESTER
1824

Experimental Design

We have simpler programs — do we
still get a decent speedup?

Commodity hardware

Intel Core i7 920, 4 cores each with 2-way SMT
SUSE 11.2, Linux 2.6

Java 1.6, Scala 2.9, MUTS .1

Wall clock run time, excluding setup and IO

|0 repetitions with mean and SD recorded

25

Yy
er

The Universit
of Manchest

MANCHESTER

1824

Speedup

26 | I I I

seq —+——
coarselock

muts —%—

dataflow

3 4 5 6 7
Hardware Threads

Speedup relative to sequential

26

Yy
er

The Universit
of Manchest

MANCHESTER

1824

Conclusions

® Dataflow can be combined with transactions

® |ee shows certain properties that are currently
difficult to parallelise

® TJogether dataflow and transactions are easier to
program than on their own

® Together they produce performance similar to
transactions on their own, and faster than coarse locks

http://apt.cs.man.ac.uk/projects/ TERAFLUX/MUTS/
(or just search for “scala muts”™)

27

http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS/
http://apt.cs.man.ac.uk/projects/TERAFLUX/MUTS/

Yy
er

The Universit
of Manchest

MANCHESTER

1824

Questions

Chris Seaton, Daniel Goodman, Mikel Lujan, and lan Watson

University of Manchester

{seatonc,goodmand,mikel.lujan,watson}@cs.man.ac.uk

Chris Seaton is an EPSRC funded student. Mikel Lujan is a Royal Society
University Research Fellow. The Teraflux project is funded by the European
Commission Seventh Framework Programme.

EPSRC

Engineering and Physical Sciences
Research Council

TERAFLUX

28

mailto:seatonc@cs.man.ac.uk
mailto:seatonc@cs.man.ac.uk

Yy
er

The Universit
of Manchest

MANCHESTER

1824

val boardStateForFreeze = boardStateVar.take() // Lock
val privateBoardState = boardStateForFreeze.freeze
boardStateVar.put(boardStateForFreeze) // Unlock
val boardStateForLay = boardStateVar.take() // Lock

val verified = verifyRoute(route, solution, boardStateForLay)

1f (verified)

layRoute(route, solution, boardStateForLay)
else

scheduleForRetry(route)

boardStateVar.put(boardStateForLay) // Unlock

Coarse lock

29

Yy
er

The Universit
of Manchest

MANCHESTER

1824

val privateBoardState = atomic { boardState.freeze }

atomic {
1f (verifyRoute(route, solution, boardState))
layRoute(route, solution, boardState)

else
scheduleForRetry(route)

Transactional

30

Yy
er

The Universit
of Manchest

MANCHESTER

1824

val threads = for (n <- 0 until threadsCount) yield
new Thread(new Runnable() {
def run() = {
while (...) {
var routes = routesVar.take() // Lock
routesVar.put(routes) // Unlock

1f (route == null) {

} else {
val solution = solveRoute(board, route, boardStateVar)
var solutions = solutionsVar.take() // Lock
solutions ::= solution
solutionsVar.put(solutions) // Unlock

)

Threads with a work list

31

Yy
er

The Universit
of Manchest

MANCHESTER

1824

val solutionCollector =
DFManager.createCollectorThread[Solution](routes.length)

for (route <- routes) {
val routeSolver = DFManager.createThread(solveRoute _)
routeSolver.argl = board
routeSolver.arg2 = route
routeSolver.arg3 = boardState
routeSolver.arg4 = solutionCollector.tokenl

¥

solutionCollector.addListener(solutionsOut)

Dataflow

32

