Who You Gonna Call:
Analyzing the Run-time Call-Site Behavior of Ruby
Applications

Sophie Kaleba
S.Kaleba@kent.ac.uk
University of Kent
United Kingdom

Richard Jones
R.E.Jones@kent.ac.uk
University of Kent
United Kingdom

Abstract

Applications written in dynamic languages are becoming
larger and larger and companies increasingly use multi-
million line codebases in production. At the same time, dy-
namic languages rely heavily on dynamic optimizations, par-
ticularly those that reduce the overhead of method calls.

In this work, we study the call-site behavior of Ruby bench-
marks that are being used to guide the development of up-
coming Ruby implementations such as TruffleRuby and YJIT.
We study the interaction of call-site lookup caches, method
splitting, and elimination of duplicate call-targets.

We find that these optimizations are indeed highly effec-
tive on both smaller and large benchmarks, methods and
closures alike, and help to open up opportunities for fur-
ther ontimizatione <1ich ac inlinine However we <how that

Octave Larose
O.Larose@kent.ac.uk
University of Kent
United Kingdom

Stefan Marr
s.marr@kent.ac.uk
University of Kent

United Kingdom

ACM Reference Format:

Sophie Kaleba, Octave Larose, Richard Jones, and Stefan Marr. 2022.
Who You Gonna Call: Analyzing the Run-time Call-Site Behavior of
Ruby Applications. In Proceedings of the 18th ACM SIGPLAN Inter-
national Symposium on Dynamic Languages (DLS °22), December 07,
2022, Auckland, New Zealand. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3563834.3567538

1 Introduction

Dynamic languages such as JavaScript, PHP, Python, and
Ruby are used in industry to build a wide range of systems
including application backends. Their dynamic language fea-
tures support rapid application development, but require
run-time compilation and optimization to achieve good per-



This is research by

Sophie Kaleba

Doctoral Student
University of Kent, UK

I’'m just advertising it with her permission



Call-sites are everywhere in Ruby:

user.send_welcome_email
point.x
left + right

[a, b, c] + not_an_array

Most Ruby code is a call-site!



Call-sites can be:
e Monomorphic - only ever calls one method
e Polymorphic - calls one of a small number of methods

e Megamorphic - calls one of a large number of methods, or literally any
method

Monomorphic is the best because monomorphic calls are like simple C calls - a
simple machine call instruction.



O 00 N O U W W N =

— e
N = O

def

end

def

end

def

end

modify (argl)
argl.capitalize ()

kapitalize(argl)
modify(argl)

callsKapitalize ()
kapitalize("foo") # a String
kapitalize(:bar) # a Symbol

callsKapitalize():0

VRN

kapitalize():10

callsKapitalize():0

LN

kapitalize():11

N/

modify():6

l

capitalize():2

kapitalizeStr():10

kapitalizeSym():11

l

l

modifyStr():6

modifySym():6

l

i

capitalizeStr():2

capitalizeSym():2

(b) Impact of splitting on the application’s structure




Table 3. The polymorphic and megamorphic calls remaining
after having eliminated target duplicates are almost com-
pletely monomorphized by splitting.

Number of calls After splitting Number

Benchmark Poly. Mega. Poly. Mega. of splits
BlogRails 490,072 557 -100% -100% 2163
ChunkyCanvas* 66 0 -100% 0% 43
ChunkyColor* 66 0 -100% 0% 42
ChunkyDec 66 0 -100% 0% 42
ERubiRails 391,997 553 -100% -100% 1851
HexaPdfSmall 1,443,211 2,066 -100% -100% 498
LiquidCartParse 219 0 -100% 0% 107
LiquidCartRender 2,000 0 -100% 0% 207
LiquidMiddleware 233 0 -100% 0% 114
LiquidParseAll 679 0 -100% 0% 136
LiquidRenderBibs 23,633 0 -100% 0% 191
MailBench 18,322 0 -100% 0% 343
PsdColor 6,586 0 -100% 0% 300
PsdCompose* 6,586 0 -100% 0% 300
PsdImage* 6,588 0 -100% 0% 300
PsdUtil* 6,584 0 -100% 0% 300

Sinatra 1,362 220 -100% -100% 297
ADConvert 12,226 0 -100% 0% 236
ADLoadFile 10,525 0 -100% 0% 175
DeltaBlue 561 0 -100% 0% 78
PsychLoad 103,506 0 -100% 0% 78
RedBlack 8,043,472 0 -100% 0% 50




“Ruby is slow because any call-site could call any method!”

No - we have the technology to fully monomorphise a Ruby application! *

* may come with a cost to memory and start-up and warm-up time!



Made possible by:

TruffleRuby - super-powerful Ruby interpreter, developed by Oracle and Shopify,
by me and friends like Maple Ong and Kevin Menard here today at RubyConf
Mini

Dispatch chains - ‘multi-dimensional’ inline caches, new research idea invented
by me and Stefan Marr in order to optimise Ruby’s trickiest call-sites, being
explored further by Matthew Alp at Shopify

Splitting - old ideq, turned up to 11 in TruffleRuby *

* Sophie has found it’s possibly turned up too far



Could this idea go into MRI and work there?

Maybe! We should get someone to try that!



The Ruby Bibliography

Academic writing on the Ruby programming language

The Ruby programming language hasn't historically been the subject of much research, either in industry or academia. A lot of recent systems research has
used languages like C, C++ and Java. Contemporary programming language research often uses languages like Java, Scala, Racket and Haskell. Modern
research into VMs, compilers and garbage collectors is often based on Java or recently Python.

However there are now a growing number of research projects using Ruby. On this page we list theses and peer-reviewed papers and articles that cover
Ruby implementation or use Ruby, including alternative implementations such as JRuby.

Also see the Ruby Compiler Survey.

Virtual Machines and Compilers

S. Kaleba, O. Larose, R. Jones, S. Marr. Who You Gonna Call: Analyzing the Run-time Call-Site Behavior of Ruby Applications. In Proceedings of the 18th
Symposium on Dynamic Languages (DLS), 2022. | TruffleRuby

M. Chevalier-Boisvert, N. Gibbs, J. Boussier, S. Wu, A. Patterson, K. Newton, J. Hawthorn. YJIT: a basic block versioning JIT compiler for CRuby. In
Proceedings of the 13th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages (VMIL), 2021. i)

B. Daloze. Thread-Safe and Efficient Data Representations in Dynamically-Typed Languages. PhD thesis, Johannes Kepler University Linz, 2019.
TruffleRuby

R. Mosaner, D. Leopoldseder, M. Rigger, R. Schatz, H. Méssenbdck. Supporting On-Stack Replacement in Unstructured Languages by Loop
Reconstruction and Extraction. In Proceedings of the 16th International Conference on Managed Programming Languages and Runtimes (MPLR), 2019.
TruffleRuby

K. Sasada. Gradual Write-Barrier Insertion into a Ruby interpreter. In Proceedings of the International Symposium on Memory Management (ISMM),

2019. (0

K. Sugiyama, K. Sasada, M. J. Diirst. Dynamic Extension of the Ruby Virtual Machine Stack. In the IPS] Journal of Programming (PRO), 2018. In
Japanese. [0}



